Maker Breaker Triangle Game

Maker Breaker games evolved from positional games and are a well studied topic in combinatorics. We want to study in particular the maker breaker triangle game. This game works as follows. We play on the complete graph with \(n \) vertices and two players, Maker and Breaker. We additionally fix some \(q \) and then the rules are as follows. Maker can claim one of the edges for himself, then Breaker claims \(q \) edges for himself. This repeats until either Maker can claim the 3 edges of a triangle or until all edges are claimed and Maker has not won yet in which case we call this a win for Breaker.

This game has gotten some attention. Clearly both players have optimal strategies as there is no uncertainty involved. Maybe less obvious, for \(q = 1 \) this is a makers win, that is playing optimally, Maker can always force a victory. On the contrary for \(q = n − 1 \) this is a breakers win. Now the interesting question is, for what value of \(q \) does this switch?

It has been known for a while that the rough point of how large \(q \) must be for Breaker to win is of the order \(\theta(\sqrt{n}) \). In a recent paper [1] the gap was narrowed down to \(q \in [\sqrt{2}, \frac{\sqrt{8}}{3}n + o(n)] \). This was done with a clever strategy for Breaker using a potential function describing what the most urgent vertices are.

The goal of this thesis would be to take a closer look at this potential function, see if it can be optimized and implement it on with some strategies for Maker to see how it performs in practice.

Prerequisites: Passing grade in at least one of the courses APC or Randomized Algorithms.

Contact Information:
Pascal Su, CAB G 33.2, sup@inf.ethz.ch

References